"The influence of melt composition on the local structure around trace elements in glasses and melts with implications for crystal-melt partitioning"

<u>S. Simon¹</u>, M. Wilke¹, S. Klemme², W. Caliebe³, R. Chernikov³, K.Kvashnina⁴

¹GeoForschungsZentrum, GFZ, Potsdam ²Westfälischen Wilhelms-Universität, Mineralogie, Münster ³Deutsches Elektronen-Synchrotron, DESY, Hamburg ⁴European Synchrotron Radiation Facility, Grenoble, France

Introduction

"Trace elements (TE) are important indicators in magmatic and metamorphic rocks on Earth, Moon and the terrestrial planets."

Partitioning is a thermodynamic process => minimization of the free energy.

Sebastian Simon, Goldschmidt 2013

Motivation

- influence of melt composition (polymerization) on the partitioning of trace elements
- all factors (T, p, crystal chemistry) stay nearly constant, only the melt composition change

Studied Trace Elements

Polymerisation of Glass/Melt

(GNU Free Documentation License)

- anionic framework of corner-sharing SiO₄ tetrahedra
- connectivity of the tetrahedra depends on Si/O ratio
- full polymerized network with only bridging oxygens (BO)
- alkaline and alkaline earth cations => depolymerisation; increase of non bridging oxygens (NBO)
- <u>Two different approaches:</u>
 - NBO/T =2(NM-T³⁺)/T⁴⁺
 ASI = molar ratio of Al₂O₃/ (Na₂O + K₂O + C₂O))

Polymerisation of Glass/Melt

(GNU Free Documentation License)

- anionic framework of corner-sharing SiO₄ tetrahedra
- connectivity of the tetrahedra depends on Si/O ratio
- full polymerized network with only bridging oxygens (BO)
- alkaline and alkaline earth cations => depolymerisation; increase of non bridging oxygens (NBO)
- <u>Two different approaches:</u>
 - NBO/T =2(NM-T³⁺)/T⁴⁺ • ASI = molar ratio of $Al_2O_3/(Na_2O + K_2O + C_2O)$)

Sebastian Simon, Goldschmidt 2013

Polymerisation of Glass/Melt

(GNU Free Documentation License)

- anionic framework of corner-sharing SiO₄ tetrahedra
- connectivity of the tetrahedra depends on Si/O ratio
- full polymerized network with only bridging oxygens (BO)
- alkaline and alkaline earth cations => depolymerisation; increase of non bridging oxygens (NBO)
- <u>Two different approaches:</u>
 - NBO/T =2(NM-T³⁺)/T⁴⁺
 ASI = molar ratio of Al₂O₃/ (Na₂O + K₂O + C₂O))

Sebastian Simon, Goldschmidt 2013

X-Ray Absorption Fine Structure - XAFS

(GNU Free Documentation License)

- **XANES** = X-ray Absorption Near Edge Structure: coordination-, oxidation change
- EXAFS = Extended X-ray Absorption Fine Structure: CN, R, PDF

La L₃-edge – XANES – Glasses

applying Natoli's Rule:

 $\Delta E * R^2 = C$

 $\Delta E_{ASI200} * R^{2}_{ASI200} = \Delta E_{ASI260} * R^{2}_{ASI260}$

 $\Delta E_{ASI260} / \Delta E_{ASI200} = R^2_{ASI260} / R^2_{ASI200}$

 $\sqrt{(R^2_{ASI260/}R^2_{ASI200})} = 1.02$

=> bond length La-O increase from ASI200 to ASI260 for 2%

Simon et. al. (in. prep.)

9

Y K-edge – EXAFS - Glasses

- k^3 weighted oscillations and Fourier transformations of the EXAFS
- glasses with increasing ASI (polymerization) from ASI200 => ASI280

Y-O Pair Distribution Function

Sebastian Simon, Goldschmidt 2013

Simon et. al. (2012)

Yb-O Pair Distribution Function

Sebastian Simon, Goldschmidt 2013

Simon et. al. (in. prep.)

Gd-O Pair Distribution Function

Sebastian Simon, Arbeitsgruppen-Seminar 2013

None Bridging Oxygen's vs. Bridging Oxygen's

depolymerized melt

polymerized melt

- less polymerized melt => number of NBO's high enough => symmetric PDF
- more polymerized => not enough NBO's available, over-bonding of BO's counterbalanced by an increase of CN and R => broad and asymmetric PDF

Correlation of D with R?

REE	R_{ASI260}/R_{ASI200}	$\mathbf{D}_{ASI260} / \mathbf{D}_{ASI200}$
La	1.02	12.9
Gd	1.01	381.7
Y	1.01	172.6
Yb	1.03	42.6

- increase of radial distance REE-O of \approx 1-3%
- 6-fold coordination is more favourable
- strong correlation of the D with R

Glass Structure = Melt Structure?

- proof if structure above T_G correspond to structure in quenched melts
- in situ EXAFS measurement from room temperature up to 900°C under atmospheric conditions
- glasses were heated with PtRh₁₀-loop and fluorescence was collected

HT Y-EXAFS – Glass/Melt

- PDF getting skewer and broader with increase of T
- increase of R with thermal expansion of glass/melt
- change in slope indicate T_G
- small changes of coordination from glass to melt, reflected in R
- change of the coordination number within the uncertainties of the method

Simon et. al. (in. prep.)

Summary

- 6-fold coordinated REE will preferentially bond to NBO's
- over-bonding of BO's around REE is counterbalanced by an increase of coordination number and distance to satisfy local charge balance requirements => increase in asymmetry and width of distribution
- strong correlation between $D_{titanite/melt}$ and R => more complex
- small changes of local structure of REE between glass and melt

Take Home Message:

 configuration in less polymerized melts are more favorable than the one in polymerized melts => this makes the REE more compatible in these melts

Sebastian Simon, Goldschmidt 2013

19 **HELMHOLTZ**